Author:
Singh K.S.,Khare A.,Sharma A.K.
Abstract
AbstractLaser-produced copper plasma in the presence of variable transverse external magnetic field in air is investigated using optical emission spectroscopy. As the magnetic field increases from 0 to 0.5 T, the intensity of Cu I lines initially increases and then decreases slightly at a 0.5 T. The maximum intensity enhancement of all five Cu I lines occurs at a magnetic field of 0.3 T. The increase in intensity is attributed to an increase in the electron impact excitation of Cu. With increase in magnetic field, the electron density and temperature were found to increase due to increase in the confinement of plasma. The difference in intensity enhancement factor is due to the difference in excitation rate coefficients. The surface morphology of irradiated copper target is also analyzed at 0.3 T magnetic field at which the density is maximum and reveals the formation of Cu/Cu2O/CuO nanoparticles (NPs). More NPs are formed at the peripheral region than at the central region of the ablated crater and is due to the oxidation of Cu atom in the plasma–ambient interface. The larger grain size of nanostructures in the presence of magnetic field is due to an increase in the inverse pulsed laser deposition. The intensity of Raman peak of Cu2O decreases in the presence of magnetic field and that of CuO increases which is more likely due to conversion of Cu2O to CuO. The photoluminescence intensity of CuO increases in the presence of magnetic field due to the phase transformation of Cu2O to CuO in agreement with the result of Raman spectroscopy.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献