Irradiation asymmetry effects on the direct drive targets compression for the megajoule laser facility

Author:

Demchenko N.N.,Doskoch I.YA.,Gus'kov S.YU.,Kuchugov P.A.,Rozanov V.B.,Stepanov R.V.,Vergunova G.A.,Yakhin R.A.,Zmitrenko N.V.

Abstract

AbstractIn the previous works (Rozanov et al., 2013; 2015) we have performed one-dimensional (1D) numerical simulations of the target compression and burning at the absorbed energy of ~1.5 MJ. As a result, the target was chosen to have a low initial aspect ratio in order to be less sensitive to the influence of such parameters as laser pulse duration, total laser energy, and equations of state model. The simulation results demonstrated a higher probability of ignition and effective burning of such a system. In the present work we discuss the impact of irradiation asymmetry on this baseline target implosion. The details of the 1D compression and a possible influence of 2D and 3D effects due to the hydrodynamic instability and mixing have been described. In accordance with the 2D calculations the target is still ignited, however, the symmetry analysis of 3D ones gives reasons to further reduce the efficiency of conversion of kinetic energy into potential energy.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Reference34 articles.

1. Landen O.L. (2014). NIF laser-matter experiments: Status and prospects. Book of Abstracts of the 33rd European Conf. on Laser Interaction with Matter, 31 August–5 September 2014, Paris, France, p. 29.

2. Rozanov V.B. , Zmitrenko N.V. , Kuchugov P.A. , Stepanov R.V. , Statsenko V.P. , Yanilkin Yu.V. & Yakhin R.A. (2014). Hydrodynamic instabilities and mixing in the direct-drive laser targets for the megajoule scale facilities. Book od Abstracts of the 33rd European Conf. on Laser Interaction with Matter, 31 August–5 September 2014, p. 101.

3. Progress towards ignition on the National Ignition Facility

4. Low initial aspect-ratio direct-drive target designs for shock- or self-ignition in the context of the laser Megajoule

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3