Computer simulation and experimental benchmarking of ultrashort pulse laser ablation of metallic targets

Author:

Suslova Anastassiya,Elsied Ahmed,Hassanein Ahmed

Abstract

AbstractIntegrated simulation results of femtosecond laser ablation of copper were compared with new experimental data. The numerical analysis was performed using our newly developed FEMTO-2D computer package based on the solution of the two-temperature model. Thermal dependence of target optical and thermodynamic processes was carefully considered. The experimental work was conducted with our 40 fs 800 nm Ti:sapphire laser in the energy range from 0.14 mJ to 0.77 mJ. Comparison of measured ablation profiles with simulation predictions based on phase explosion criterion has demonstrated that more than one ablation mechanisms contribute to the total material removal even in the laser intensity range where explosive boiling is dominating. Good correlation between experimental and simulation results was observed for skin depth and hot electron diffusion depth – two parameters commonly considered to identify two ablation regimes in metal. Analysis of the development dynamics for electron–lattice coupling and electron thermal conduction allowed explaining different ablation regimes because of the interplay of the two parameters.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Reference43 articles.

1. Atomistic Modeling of Short Pulse Laser Ablation of Metals: Connections between Melting, Spallation, and Phase Explosion

2. The role of electron–phonon coupling in femtosecond laser damage of metals;Wellershoff;Applied Physics A,1999

3. Numerical simulation of ballistic electron dynamics and heat transport in metallic targets exposed to ultrashort laser pulse;Suslova;Journal of Applied Physics,2018

4. Polek MP (2015) Effects of femtosecond laser irradiation of metallic and dielectric materials in the low-to-high fluence regimes, MS thesis, Purdue University.

5. Ablation of Solids under Femtosecond Laser Pulses

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3