Intense heavy ion beams as a pumping source for short wavelength lasers

Author:

Adonin A.,Turtikov V.,Ulrich A.,Jacoby J.,Hoffmann D.H.H.,Wieser J.

Abstract

AbstractThe high energy loss of heavy ions in matter as well as the small angular scattering makes heavy ion beams an excellent tool to produce almost cylindrical and homogeneously excited volumes in matter. This aspect can be used to pump short wavelength lasers. For the first time, a beam of heavy ions was used to pump a short wavelength gas laser in an experiment performed at the GSI ion accelerator facility in December 2005. In this experiment, the well-known KrF* excimer laser was pumped with an intense uranium beam. Pulses of an uranium beam compressed down to 110 ns (full width at half maximum) with initial particle energy of 250 MeV per nucleon were stopped inside a gas laser cell. A mixture of an excimer laser premix gas (95.5%Kr + 0.5%F2) and a buffer gas (Ar) in different proportions was used as the laser gas. The maximum beam intensity reached in the experiment was 2.5 × 109particles per pulse, which resulted in 34 J/g specific energy deposited in the laser gas. The laser effect on the transition at λ = 248 nm has been successfully demonstrated by various independent methods. There, the laser threshold was reached with a beam intensity of 1.2 × 109particles per pulse, and the energy of the laser pulse of about 2 mJ was measured for an ion beam intensity of 2 × 109particles per pulse. As a next step, it is planned to reduce the laser wavelength down to the vacuum ultraviolet spectral region, and to proceed to the excimer lasers of the pure rare gases. The perspectives for such experiments are discussed and the detailed estimations for Xe and Kr cases are given. We believe that the use of heavy ion beams as a pumping source may lead to new pumping schemes on the higher lying level transitions and considerably shorter wavelengths, which rely on the high cross sections for multiple ionization of the target species.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Reference40 articles.

1. Hydrodynamic motion of a heavy-ion-beam-heated plasma

2. Characteristics of electron‐beam‐excited Xe*2at low pressures as a vacuum ultraviolet source

3. Excimers and excimer lasers

4. Production Mechanisms and Radiative Lifetimes of Argon and Xenon Molecules Emitting in the Ultraviolet

5. Varentsov D. , Adonin A. , Fortov V.E. , Gryaznov V.K. , Hoffmann D.H.H. , Kulish M. , Lomonosov I. , Mintsev V. , Ni P. , Nikolaev D. , Shilkin N. , Shutov A. , Spiller P. , Tahir N.A. , Ternovoi V. & Udrea S. (2004). Report on December 2003 beamtime experiment at HHT: Near-critical HED states of lead generated by intense uranium beam. Scientific Report 2003. GSI: Darmstadt, Germany.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3