The effect of intense short pulse laser shapes on generating of the optimum wakefield and dissociation of methane molecule

Author:

Irani E.,Zare S.,Navid H.A.,Dehghani Z.,Sadighi-Bonabi R.

Abstract

AbstractThe optimum convolution of dual short pulse for producing the maximum wakefield and the highest dissociation probability of CH4has been investigated. By using three fundamental shapes of pulses though four different arrangements, the generated wake are considered in plasma. It is found that when the first and second pulses were rectangular–triangular and sinusoidal pulse shapes, respectively, the resultant wakefield amplitude is the highest. This effect opens up a new novel way by pulse shaping mechanism in the photo dissociation dynamics of molecules and controlling of chemical reactions in the desired channels by short pulse intense lasers for reducing the computation time of genetic algorithm model. Using field assisted dissociation model, the dissociation probability for a CH4+molecule exposed to a 100 femtosecond 8 Jcm−2Ti:Sapphire laser pulse is calculated. Here, the highest possible dissociation probability of the methane ion is calculated by the gradient optimization method in which the gradient of a function should be in the direction of the local extremes. The C-H molecular bond of CH4+ion is assumed to be in the same direction as the electric field component of the laser pulse. These results show that there is an excellent match with experimental data. The remarkable feature of this work is that the sensitivity of the dissociation probability of the initial bond lengthq, is studied and the desired product channel is controlled by variation of the laser intensity and it's time evolution by introducing a characteristic vectored space for intensity and duration of two tailored rectangular femtosecond laser pulses.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3