Production of sub-gigabar pressures by a hyper-velocity impact in the collider using laser-induced cavity pressure acceleration

Author:

Badziak J.,Kucharik M.,Liska R.

Abstract

AbstractProduction of high dynamic pressure using a strong shock wave is a topic of high relevance for high-energy-density physics, inertial confinement fusion, and materials science. Although the pressures in the multi-Mbar range can be produced by the shocks generated with a large variety of methods, the higher pressures, in the sub-Gbar or Gbar range, are achievable only with nuclear explosions or laser-driven shocks. However, the laser-to-shock energy conversion efficiency in the laser-based methods currently applied is low and, as a result, multi-kJ multi-beam lasers have to be used to produce such extremely high pressures. In this paper, the generation of high-pressure shocks in the newly proposed collider in which the projectile impacting a solid target is driven by the laser-induced cavity pressure acceleration (LICPA) mechanism is investigated using two-dimensional hydrodynamic simulations. A special attention is paid to the dependence of shock parameters and the laser-to-shock energy conversion efficiency on the impacted target material and the laser driver energy. It has been found that both in case of low-density and high-density solid targets, the shock pressures in the sub-Gbar range can be produced in the LICPA-based collider with the laser energy of only a few hundreds of joules, and the laser-to-shock energy conversion efficiency can reach values of 10–20%, by an order of magnitude higher than the conversion efficiencies achieved with other laser-based methods used so far.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3