Femtosecond laser ablation of brass: A study of surface morphology and ablation rate

Author:

Shaheen Mohamed E.,Fryer Brian J.

Abstract

AbstractThe interaction of near infrared femtosecond laser pulses with a Cu based alloy (brass) in ambient air at atmospheric pressure and under different laser conditions was investigated. The effects of laser fluence and number of pulses on surface morphology and ablation rate were studied using scanning electron microscopy (SEM) and optical microscopy. Ablation rates were found to rapidly increase from 83 to 604 nm/pulse in the fluence range 1.14–12.21 J/cm2. At fluence >12.21 J/cm2, ablation rates increased slowly to a maximum (607 nm/pulse at 19.14 J/cm2), and then decreased at fluence higher than 20.47 J/cm2 to 564 nm/pulse at 24.89 J/cm2. Large amounts of ablated material in a form of agglomerated fine particles were observed around the ablation craters as the number of laser pulses and fluence increased. The study of surface morphology shows reduced thermal effects with femtosecond laser ablation in comparison to nanosecond laser ablation at low fluence.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3