External magnetic field effect on plume images and X-ray emission from a nanosecond laser produced plasma

Author:

Rafique M.S.,Khaleeq-Ur-Rahman M.,Riaz I.,Jalil R.,Farid N.

Abstract

AbstractThe plume images of the laser produced silver plasma in the absence and presence of 0.45 T transverse magnetic field has been investigated under vacuum ~10−4 torr and in air. An Nd:YAG laser (1.064 µm, 1.1 MW, 9 ns) with intensity ~1012 Wcm−2 was used to generate plasma. A CCD image capture system was used for plasma imaging to explore the plume. A magnetic probe was employed to measure the variation in internal magnetic field of plasma with as well as without 0.45 T external transverse magnetic field. The X-ray emission from plasma in both the cases (with and without B field) was also monitored using two PIN photodiodes filtered with 24 µm Cu and 24 µm Al. The plume images in both the cases were then correlated with the time resolved soft X-ray emission. It was found that the self generated magnetic field of the plasma increases in the presence of magnetic field. Plume images reveal that the confinement of the plume takes place in the presence of magnetic field both in the cases of air and vacuum. Jet and spikes like structures were also observed due to plasma instabilities. Lobe formation in the plume at latter stages of plasma evolution was more prominent in air than under vacuum. X-ray emission signals exhibited an enhancement in the emission under transverse magnetic field. An increased rate of recombination due to high density as a result of plasma confinement across the applied magnetic field was found to be the main reason behind emission enhancement.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3