Fast ignitor: Fluid dynamics of channel formation and laser beam propagation

Author:

Hain S.,Mulser P.

Abstract

The concept of fast ignitor is intimately connected with the fundamental phenomenon of ultra-intense light beam propagation through dense matter in which kinetic effects combine with radiation pressure dominated hydrodynamics to form a complex scenario of extremely non-linear physics. In this paper, the fluid dynamic aspect of channel formation in a highly over-dense plasma is studied and possible attenuation mechanisms of the propagating pulse are evaluated in one dimension. Under the assumption that mass ablation reaches a quasistationary state, the radiation-assisted ablation pressure, the speed of the bow shock, and the density steepening around the critical point are determined self-consistently from the ID fluid conservation relations and the electromagnetic wave equation. Due to ponderomotive profile steepening, the ablation pressure is reduced by 40% in the subsonic region and is dominated by the radiation pressure in the supersonic domain. Channel lengths are calculated for various intensities and pellet compression ratios. Likewise, the nonlinear propagation of a superintense electromagnetic wave in an underdense plasma channel is investigated for the ID case with the help of a relativistic fluid model.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3