Author:
Charakhch'yan Alexander A.,Khishchenko Konstantin V.
Abstract
AbstractThe one-dimensional problem on bilatiral irradiation by proton beams of the plane layer of condensed DT mixture with length 2H and density ρ0 ≤ 100ρs, where ρs is the fuel solid-state density at atmospheric pressure and temperature of 4 K, is considered. The proton kinetic energy is 1 MeV, the beam intensity is 1019 W/cm2 and duration is 50 ps. A mathematical model is based on the one-fluid two-temperature hydrodynamics with a wide-range equation of state of the fuel, electron and ion heat conduction, DT fusion reaction kinetics, self-radiation of plasma and plasma heating by α-particles. If the ignition occurs, a plane detonation wave, which is adjacent to the front of the rarefaction wave, appears. Upon reflection of this detonation wave from the symmetry plane, the flow with the linear velocity profile along the spatial variable x and with a weak dependence of the thermodynamic functions of x occurs. An appropriate solution of the equations of hydrodynamics is found analytically up to an arbitrary constant, which can be chosen so that the analytical solution describes with good accuracy the numerical one. The gain with respect to the energy of neutrons G ≈ 200 at Hρ0 ≈ 1 g/cm2, and G > 2000 at Hρ0 ≈ 5 g/cm2. To evaluate the ignition energy Eig of cylindrical targets, the quasi-1D model, limiting trajectories of α-particles by a cylinder of a given radius, is suggested. The model reproduces the known theoretical dependence Eig ~ ρ0−2 and gives Eig = 160 kJ for ρ0 = 100ρs ≈ 22 g/cm3.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献