Author:
Kawata S.,Sato T.,Teramoto T.,Bandoh E.,Masubichi Y.,Takahashi I.
Abstract
The radiation transport effect on pellet implosion and the Rayleigh-Taylor (R-T) instability are studied in a light-ion beam (LIB) inertial confinement fusion (ICF) by numerical simulation and analytic work. First, we present the nonuniformity-smoothing effect of the radiation transport on implosion symmetry in an LIB ICF fuel pellet. The 2-D implosion simulation shows that the initial nonuniformity can be smoothed out well in an LIB ICF pellet; for example, the initial nonuniformity of 6% is smoothed to 0.07% during the implosion phase. In addition, linear analyses for the R-T instability under nonuniform acceleration in space and under radiation are also performed: The nonuniform acceleration field in space does not change the growth rate (γ) of the R-T instability. However, this nonuniformity may suppress the growth itself of the R-T instability. Radiation may reduc the growth rate (γ).
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献