Abstract
AbstractAn analytical formalism of self focusing and self-phase modulation of an intense short pulse laser in a plasma due to relativistic and ponderomotive nonlinearities is developed. In the paraxial ray approximation, the pulse retains its Gaussian radial profile, however, its spot size varies with the distance of propagation in a periodic manner. It is influenced by self focusing. The frequency of the laser undergoes red shift. For a tanhyperbolic temporal profile of pulse, the red-shift is maximum at the foot of the pulse and decreases slowly as one goes to higher and higher intensity portions. The effect of ponderomotive nonlinearity is very significant in this respect. The maximum downshift occurs at a distance at which the laser acquires a minimum spot size. With retarded time normalized axial intensity increases more atz ~ Rdand the radial intensity is also more narrowly peaked atz ~ Rd, whereRd = 2πr02/λ is the Rayleigh length,r0and λ are the spot size and wavelength of the laser pulse respectively.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献