Author:
Kumar Ashok,Dahiya Deepak,Tripathi V. K.
Abstract
AbstractThe bubble regime acceleration of electrons by a short pulse laser in a carbon nanotube (CNT) embedded plasma is investigated, employing two-dimensional Particle-in-Cell simulations. The laser converts the CNT placed on the laser axis into dense plasma and expels the electrons out, to form a co-moving positive charged sheet inside the bubble. The additional field generated due to sheet enhances the energy of the monoenergetic bunch by about 5% and their number by 5–20%. For a typical 40 fs, 7.5 × 1019 Wcm−2 pulse in an underdense plasma of density n0, CNT of thickness 25 nm and electron density 30n0, produces a monoenergetic bunch of 115 MeV with 5% energy spread. When CNT density is raised to 90n0, the energy gain, energy spread and accelerated charge increases further. The analytical framework supports these features.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献