Author:
Ramis R.,Ramírez J.,Schurtz G.
Abstract
AbstractWe consider the symmetry of cylindrical implosions of laser targets with parameters corresponding to experiments proposed for the LIL laser facility at Bordeaux: eight laser beams in octahedrical configuration, delivering a total of 50 kJ of 0.35 µm laser light in 5 ns, impinging on 1.26 mm diameter polystyrene cylindrical shells filled with deuterium at 30 bar and 5.35 mg cm−3; this configuration allows to place diagnostics along the symmetry axis to evaluate directly the uniformity of implosion. Numerical studies have been carried out by using the hydrodynamic computer codes MULTI and CHIC, including one-dimensional, and two-dimensional R–Z and R–θ simulations. Deuterium is compressed into a 1 mm long and 50 µm diameter filament, with density ranging from 2 to 6 g cm−3 and temperatures above 1000 eV. In spite of the reduced numbers of beams, a good symmetry can be achieved with a careful choice of the irradiation pattern. The heat transport smoothing between laser absorption zone and ablation layer plays a fundamental role in the attenuation of residual non-uniformities. Also, it has been found that the radiation transport determines the radial structure of the compressed filament.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献