Implosion experiments of gas-filled plastic-shell targets with [ell ] = 1 drive nonuniformity at the Gekko-XII glass laser

Author:

HEYA MANABU,SHIRAGA HIROYUKI,SUNAHARA ATSUSHI,NAKASUJI MIKIO,NISHIKINO MASAHARU,HONDA HIROSHI,FUJITA KAZUHISA,IZUMI NOBUHIKO,MIYANAGA NORIAKI,NISHIMURA HIROAKI,AZECHI HIROSHI,NARUO SHUJI,TAKABE HIDEAKI,YAMANAKA TATSUHIKO,MIMA KUNIOKI

Abstract

Effects of an implosion nonuniformity with [ell ] = 1 ([ell ]: Legendre polynomial mode number) on the hot spark formation were investigated in a series of direct-drive implosion experiments at the Gekko-Xll glass laser (Yamanaka et al., 1987). The implosion dynamics and the performance from the early to final stage of the implosion were observed with a variety of X-ray imaging and neutron diagnostics. A drive nonuniformity in the implosion with [ell ] = 1 was observed in the shape of the accelerated target at the early stage of the implosion. At the final stage of the implosion, the resultant nonuniformity with [ell ] = 1 was also observed as a geometrical shift of core plasmas from the center of the chamber. The observed neutron yield and X-ray emission properties at the final stage of the implosion were significantly degraded with an increase of the implosion nonuniformity with [ell ] = 1. The experimental results were compared with one-dimensional (1-D) and two-dimensional (2-D) hydrodynamic simulations. As a result, it was found that the implosion nonuniformity with [ell ] = 1 shifts the whole implosion dynamics towards its direction and prevents the confinement of the gas fuel considerably. However, the experimentally observed degradation in the hot spark formation, such as reductions in neutron yield and features in X-ray emission, can be reproduced in 2-D simulations not with an asymmetric perturbation of [ell ] = 1 only but with multimode nonuniformities such as [ell ] = 1 coupled with some additional middle-mode ones (e.g., [ell ] = 6). Such a complex spike structure caused by the multimode nonuniformities was found to be essential for the experimentally observed rapid cooling of the hot spark.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3