Effects of various parameters on numerical simulations of inertial confinement fusion hohlraum and radiation hydrodynamics

Author:

GUPTA N.K.,GODWAL B.K.

Abstract

In this article, we study the effect of various parameters on the estimation of radiation temperature inside an indirect drive ICF hohlraum and also study the hydrodynamics of aluminum and gold foils driven by the hohlraum radiation. A multigroup one-dimensional, radiation hydrodynamic code is used for this study. Opacities are calculated using a screened hydrogenic average atom model. We also investigate the opacities of Au-Sm and Au-Gd mixtures. It is shown that the mixing of two high Z materials can lead to an enhancement in the Rosseland means, which is of direct interest in indirect-drive inertial confinement fusion. The radiation temperature inside a cylindrical hohlraum is seen to be strongly dependent on the number of frequency groups used. One group radiation transport underpredicts the radiation temperature. It is shown that erroneous results can be obtained if the space mesh in the hohlraum wall is not fine enough. The spectrum of the radiation inside the hohlraum is seen to be different from Planck, especially in the high-energy range. This may lead to preheating of the target. Hydrodynamics of an aluminum foil driven by the hohlraum radiation is also presented in this article. A scaling law for the radiation-driven shock-wave speed in the gold foil is obtained.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3