Author:
Wilson D. C.,Dudziak D.,Magelssen G.,Zuckerman D.,Driemeyer D.
Abstract
The Heavy-Ion Fusion Systems Assessment project is nearing completion of a two-year effort. The resulting system modelwill be used to set directions for future target design work.Major uncertainties in target design were studied using thecost of electricity as a figure of merit. Net electric power was fixed at 1000 MW to eliminate large effects due to economies of scale. The system is relatively insensitive to target gain, factors of three changes in gain resulting in 8 to 12% changes in electricity cost. Possible increased peak power requirements pose only a small cost risk, but require many more beamlets for transport. A shortening ofthe required ion range causes both cost and beamlet difficulties. A factor of 4 decrease in the required range at a fixed driver energy increases electricity cost by 44% and raises the number of beamlets to 240. Finally, the heavy ion fusion system can accommodate large increases in target costs. Thus, to address the major uncertainties, target design should concentrate on requirements for ion range andpeak driver power.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献