Soft X-ray emissions from neon gas-puff Z-pinch powered by Qiang Guang-I accelerator

Author:

Kuai B.,Wu G.,Qiu A.,Wang L.,Cong P.,Wang X.

Abstract

AbstractThe X-ray emission, especially the K-shell emission, from a neon gas-puff Z-pinch powered by the Qiang Guang-I accelerator, about 1.5 MA in amplitude and 100 ns in rise time, were calculated based on the two-level model and measured with X-ray diodes and an eight-frame X-ray pinhole camera. The simulation results showed that the K-shell yield is highly sensitive to the peak current. The experimental results confirmed that the matching of the Z-pinch load (mass and initial radius) to the current is crucial for getting a higher X-ray yield. Being determined by the imploding time, the pinch current plays a more important role than the current amplitude in K-shell emission. It seems that the preferable imploding time is about 110 ns. The K-shell radiation power with double shells, as a whole, is higher than that using single neon shell. While an implosion of a light (32 µg/cm) and small (20 mm in diameter) neon shell evolves with rather twist and asymmetries, a heavier (41 µg/cm) and bigger (25 mm in diameter) neon shell implodes more symmetrically. The double neon shells, 30 mm and 30 µg/cm for the outer shell, and 15-mm and 10 µg/cm for the inner shell, create almost “perfect” implosions evidenced by the early-time plasma shells with little perturbation and late stagnated pinch liners with a good axial uniformity. It was found that the “Zippering” effect leads to an earlier K-shell emission in the cathode region than that in the anode region, which extends the pulse width of K-shell emission.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3