Laser-supported hydrothermal wave in low-dense porous substance

Author:

Cipriani M.,Gus'kov S.Yu.,De Angelis R.,Consoli F.,Rupasov A.A.,Andreoli P.,Cristofari G.,Di Giorgio G.,Ingenito F.

Abstract

AbstractThe generalized theory of terawatt laser pulse interaction with a low-dense porous substance of light chemical elements including laser light absorption and energy transfer in a wide region of parameter variation is developed on the base of the model of laser-supported hydrothermal wave in a partially homogenized plasma. Laser light absorption, hydrodynamic motion, and electron thermal conductivity are implemented in the hydrodynamic code, according to the degree of laser-driven homogenization of the laser-produced plasma. The results of numerical simulations obtained by using the hydrodynamic code are presented. The features of laser-supported hydrothermal wave in both possible cases of a porous substance with a density smaller and larger than critical plasma density are discussed along with the comparison with the experiments. The results are addressed to the development of design of laser thermonuclear target as well as and powerful neutron and X-ray sources.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Reference39 articles.

1. Beneficial effect of CH foam coating on x-ray emission from laser-irradiated high-Z material;Xu;Physics of Plasmas,2011

2. Foam-buffered spherical implosions at 527 nm

3. Laser Imprint Reduction Using a Low-Density Foam Buffer as a Thermal Smoothing Layer at 351-nm Wavelength

4. Hydrodynamic modeling of laser interaction with micro-structured targets

5. Thomas C (2017) Foam-lined hohlraums at the National Ignition Facility. 59th Annual Meeting of the APS Division of Plasma Physics. Available at http://meetings.aps.org/link/BAPS.2017.DPP.YP11.18.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3