Hydrodynamics of plasma and shock waves generated by the high-power GARPUN KrF laser

Author:

ZVORYKIN V.D.,BAKAEV V.G.,LEBO I.G.,SYCHUGOV G.V.

Abstract

The electron-beam-pumped KrF laser installation GARPUN with a 100-J output energy and long 100-ns pulse duration has been used to investigate laser–target interactions in a broad range of laser intensities for small (150 μm) and large (∼1 cm) irradiated spots. For higher intensities (up to 5 × 1012 W/cm2), a conical shock wave was generated in condensed matter by megabar pressure at the ablation front. It propagated with a supersonic velocity in a quasisteady manner together with a conical shock wave inside a target. Evaporated target material moving with a velocity of ∼50 km/s formed an extended plasma corona of ∼5 mm length with an electron temperature of ∼100 eV. Emission spectra of plasma have been investigated in the extreme UV range 120–250 Å. For lower intensities (108–109 W/cm2), planar shock waves in normal density air were produced with initial velocities up to 4 km/s in the forward direction and 7 km/s in the opposite direction toward incident radiation. In rarefied air, the forward shock wave kept velocities constant whereas the backward ones were accelerated up to 30 km/s. Planar compression waves in transparent condensed matter were also demonstrated propagating with sonic velocity.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3