Influence of cavity and magnetic confinements on the signal enhancement and plasma parameters of laser-induced Mg and Ti plasmas

Author:

Asamoah EmmanuelORCID,Xia Ye,Hongbing Yao,Wei Pengyu,Jiawei Cong,Weihua Zhu,Lin Zhang,Quaisie James Kwasi

Abstract

AbstractIn this study, we have spectroscopically investigated the plasma generated by a Q-switched Nd:YAG laser operating at its fundamental wavelength of 1064 nm focused on magnesium (Mg) and titanium (Ti) target samples in the air under atmospheric pressure. We employed circular cavities of radii (2.5, 3.0, and 3.5 mm) and a square cavity to investigate the cavity confinement effect on the spectral emission intensities of the plasmas. We observed that the circular cavity of radius 2.5 mm had the maximum signal enhancement, and this can be attributed to the compression of the plasma and reheating by the reflected shock waves. The maximum enhancement factor of the Mg I-518.4 nm line was reached at approximately 3.8, 3.4, and 2.8 with a circular cavity of radius 2.5, 3.0, and 3.5 mm, respectively, at a delay time of 350 ns and a laser energy of 350 mJ. By applying varying external magnetic fields (0.47, 0.62, 0.91, and 1.23 T) across the generated plasma, the plasma parameters such as electron temperature and number density have been investigated. From our results, we observed that the radius of the cavity had a tremendous effect on the enhancement of the emission signal intensities. We also found that the increase in the electron temperature and the number density can be attributed to the increase in the applied magnetic field and the laser energy. From our calculations, the value of β, which was less than 1 for all the cases, confirms that there was a plasma confinement at the presence of the magnetic field.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3