Optical emissivity from a laser-driven shock-heated dense plasma

Author:

Mahdieh M.H.,Hall T.A.

Abstract

The aluminium side of two-layer Al-Plastic targets were irradiated with a long pulse (∼ 2.4 ns FWHM) 1.06-μm laser light at intensities up to 7 × 1013 W/cm2. The time history of the thermal emission of the confined rear surface of the aluminum was measured. Visible emission only occurs for a short time after the arrival of the laser-generated shock waves. Over the range of the measurements, the duration and the intensity of the emission reduce with increasing laser intensity. The experimental results are in good agreement with the results of a simple phenomenological model that assumes a linear temperature and density profile on the shock front. The values of shock velocity and maximum temperature and density that were used in the model were found using the hydrodynamic simulation code MEDUSA. From the model the shock width was measured for different conditions by matching the emission of the experiment and model. It is found that the time history of the emission is strongly sensitive to the ionization potential of the plastic that is assumed to change with density from ∼ 4 eV at zero pressure to zero at high densities. The technique provides a way to measure the pressure metallization of large band gap insulators.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3