Adiabatic formulation of charged particle dynamics in an inhomogeneous electro-magnetic field

Author:

Sagar Vikram,Sengupta Sudip,Kaw Predhiman

Abstract

AbstractThe relativistic motion of a charged particle is studied in an inhomogeneous field of finite duration laser pulse. An inhomogeneity in a laser field is due to the spatial variation of laser intensity. Such a variation in laser intensity is characteristic of focused and de-focused laser beams. In the presence of an inhomogeneity, the problem becomes non-integrable and hence particle dynamics can not be derived exactly. In the present work considering a slow variation in the laser intensity, it is shown that the particle dynamics is associated with an adiabatic invariant. It is further found that the adiabatic invariant itself evolves and in a typical example changes such that the adiabaticity parameter attains a value of order unity. Thus higher orders of invariance are required for specifying the particle dynamics in terms of an adiabatic invariant. An adiabatic formalism is derived using the Lie transform perturbation method for calculating the higher orders of invariance and to obtain the evolution of the adiabatic invariant. The estimates of energy gained by a particle considering focused laser field are obtained by solving the equation of motion numerically. On comparing the results of a numerical experiment with theoretical predictions, it is found that the energy estimates improve on taking into account higher orders of invariance predicted by the present theory.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3