Thermal resonance effect by a strong shock wave in D–T fuel side-on ignition by laser-driven block acceleration

Author:

Payun S.,Malekynia B.ORCID

Abstract

AbstractIgnition with the help of a shock wave is performed by the interaction of accelerated plasma block by a petawatt-picosecond (PW-ps) laser, with a solid-state density fuel that it is a new possibility for achieving controlled fusion by inertial confinement. The unexpected production of plasma blocks provides new access to the ignition of solid-state density fuel according to the Chu hydrodynamic model. When the produced plasma block by the PW-ps laser hits the main fuel due to the density differences between the plasma block and the main fuel of the shock wave, this progressive wave increases the density of solidified fuels and reduces the energy of the ignition threshold and increases the flammability. In this study, a new discovery of shock waves has been observed leading to the resonance phenomenon. Nuclear heat shock waves resonance in the side-on ignition of fuel in the internal layer of fuel at x ≠ 0 appears from the exact solution of the hydrodynamic equations with respect to the density profile. This important finding achieves the required ignition temperature for solid-state fuel deuterium–tritium (D–T) in certain energies, with a significant increase due to the resonance of thermonuclear waves. This discovery will facilitate practical experiments on the ignition of advanced solid-state fuels with the accelerated plasma blocks by a PW-ps laser at certain energies.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3