Plasma diagnostics by means of the scattering of electrons and proton beams

Author:

Nardi E.,Maron Y.,Hoffmann D.H.H.

Abstract

Scattering of energetic electron and proton beams by cold matter is significantly different from the scattering of these particles by plasma, which may be either highly ionized or dense strongly coupled plasma. This is due to the difference in the shielding of the target nuclei between the two cases. Quantitatively, we treat the problem by means of the Bethe Moliere multiple scattering theory and the version of this theory for plasma as derived by Lampe. We propose to use this effect as a plasma diagnostic tool, utilizing monoenergetic, well-collimated electron or proton beams produced either by femtosecond laser plasma interactions or by accelerators. The effect is first illustrated for simplicity, by calculating the widths of the angular distribution of scattered particles interacting with the extreme cases of very hot fully ionized carbon, and iron plasmas, and comparing these results to the corresponding cold material. The more relevant case of electron scattering from partially ionized iron and carbon plasmas covering the entire range from a cold to a completely ionized target is also dealt with here. This paper brings up and highlights the difference between scattering by plasma and by cold material in light of the recent proposals to employ particle beams for various fusion applications.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3