Analytical and numerical studies of heavy ion beam transport in the fusion chamber

Author:

KAGANOVICH IGOR D.,STARTSEV EDWARD A.,DAVIDSON RONALD C.

Abstract

The propagation of a high-current finite-length ion charge bunch through a background plasma is of interest for many applications, including heavy ion fusion, plasma lenses, cosmic ray propagation, and so forth. Charge neutralization has been studied both analytically and numerically during ion beam entry, propagation, and exit from the plasma. A suite of codes has been developed for calculating the degree of charge and current neutralization of the ion beam pulse by the background plasma. The code suite consists of two different codes: a fully electromagnetic, relativistic particle-in-cell code, and a relativistic Darwin model for long beams. As a result of a number of simplifications, the second code is hundreds of times faster than the first one and can be used for most cases of practical interest, while the first code provides important benchmarking for the second. An analytical theory has been developed using the assumption of long charge bunches and conservation of generalized vorticity. The model predicts nearly complete charge neutralization during quasi-steady-state propagation provided the beam pulse duration τb is much longer than the inverse electron plasma frequency ωp−1, where ωp = (4πnpe2/me)1/2 and np is the background plasma density. In the opposite limit, the beam head excites large-amplitude plasma waves. Similarly, the beam current is well neutralized provided ωpτb >> 1 and the beam radius is much larger than plasma skin depth δp = cp. Equivalently, the condition for current neutralization can be expressed in terms of the beam current as Ib >> 4.25Zb βb(nb /np)kA, where nb is the beam density, Zb is the ion charge, and Vb = βbc is the beam velocity; and the condition for charge neutralization can be expressed as Ib >> 4.25βb3(nb /np)(rb /lb)2kA, where lb and rb are the beam length and radius, respectively. For long charge bunches, the analytical results agree well with the results of numerical simulations. The visualization of the data obtained in the numerical simulations shows complex collective phenomena during beam entry into and exit from the plasma.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3