Uniform decomposition of probability measures: quantization, clustering and rate of convergence

Author:

Chevallier Julien

Abstract

AbstractThe study of finite approximations of probability measures has a long history. In Xu and Berger (2017), the authors focused on constrained finite approximations and, in particular, uniform ones in dimensiond=1. In the present paper we give an elementary construction of a uniform decomposition of probability measures in dimensiond≥1. We then use this decomposition to obtain upper bounds on the rate of convergence of the optimal uniform approximation error. These bounds appear to be the generalization of the ones obtained by Xu and Berger (2017) and to be sharp for generic probability measures.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Reference19 articles.

1. Zador P. (1963). Development and evaluation of procedures for quantizing multivariate distributions. Tech. Rep. Stanford University.

2. Chen Y. , Welling M. and Smola A. (2012). Super-samples from kernel herding. Preprint. Available at http://arxiv.org/abs/1203.3472.

3. Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces

4. Asymptotic quantization error of continuous signals and the quantization dimension

5. Random Bit Quadrature and Approximation of Distributions on Hilbert Spaces

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast procedure to compute empirical and Bernstein copulas;Applied Mathematics and Computation;2024-09

2. Convergence Rates for Regularized Optimal Transport via Quantization;Mathematics of Operations Research;2023-07-31

3. Designing universal causal deep learning models: The geometric (Hyper)transformer;Mathematical Finance;2023-04-26

4. Universal Regular Conditional Distributions via Probabilistic Transformers;Constructive Approximation;2023-03-27

5. From Optimal Transport to Discrepancy;Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3