Author:
Di Crescenzo Antonio,Meoli Alessandra
Abstract
AbstractThe basic jump-telegraph process with exponentially distributed interarrival times deserves interest in various applied fields such as financial modelling and queueing theory. Aiming to propose a more general setting, we analyse such a stochastic process when the interarrival times separating consecutive velocity changes (and jumps) have generalized Mittag-Leffler distributions, and constitute the random times of a fractional alternating Poisson process. By means of renewal theory-based issues we obtain the forward and backward transition densities of the motion in series form, and prove their uniform convergence. Specific attention is then given to the case of jumps with constant size, for which we also obtain the mean of the process. Finally, we investigate the first-passage time of the process through a constant positive boundary, providing its formal distribution and suitable lower bounds.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献