The nonhomogeneous frog model on ℤ

Author:

Rosenberg Josh

Abstract

Abstract We examine a system of interacting random walks with leftward drift on ℤ, which begins with a single active particle at the origin and some distribution of inactive particles on the positive integers. Inactive particles become activated when landed on by other particles, and all particles beginning at the same point possess equal leftward drift. Once activated, the trajectories of distinct particles are independent. This system belongs to a broader class of problems involving interacting random walks on rooted graphs, referred to collectively as the frog model. Additional conditions that we impose on our model include that the number of frogs (i.e. particles) at positive integer points is a sequence of independent random variables which is increasing in terms of the standard stochastic order, and that the sequence of leftward drifts associated with frogs originating at these points is decreasing. Our results include sharp conditions with respect to the sequence of random variables and the sequence of drifts that determine whether the model is transient (meaning the probability infinitely many frogs return to the origin is 0) or nontransient. We consider several, more specific, versions of the model described, and a cleaner, more simplified set of sharp conditions will be established for each case.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3