Machine learning algorithms for predicting undernutrition among under-five children in Ethiopia

Author:

Bitew Fikrewold H,Sparks Corey S,Nyarko Samuel H

Abstract

Abstract Objective: Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms. Design: This study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia. Setting: Households in Ethiopia. Participants: A total of 9471 children below 5 years of age participated in this study. Results: The descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others. Conclusions: The xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia.

Publisher

Cambridge University Press (CUP)

Subject

Public Health, Environmental and Occupational Health,Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3