Ship Type Recognition via a Coarse-to-Fine Cascaded Convolution Neural Network

Author:

Chen XinqiangORCID,Yang Yongsheng,Wang Shengzheng,Wu Huafeng,Tang Jinjun,Zhao Jiansen,Wang Zhihuan

Abstract

Most previous research has handled the task of ship type recognition by exploring hand-craft ship features, which may fail to distinguish ships with similar visual appearances. This situation motivates us to propose a novel deep learning based ship type recognition framework which we have named coarse-to-fine cascaded convolution neural network (CFCCNN). First, the proposed CFCCNN framework formats the input training ship images and data, and provides trainable input data for the hidden layers of the CFCCNN. Second, the coarse and fine steps are run in a nesting manner to explore discriminative features for different ship types. More specifically, the coarse step is trained in a similar manner to the traditional convolution neural network, while the fine step introduces regularisation mechanisms to extract more intrinsic ship features, and fine tunes parameter settings to obtain better recognition performance. Finally, we evaluate the performance of the CFCCNN model for recognising the most common types of merchant ship (oil tanker, container, LNG tanker, chemical carrier, general cargo, bulk carrier, etc.). The experimental results show that the proposed framework obtains better recognition performance than the conventional methods of ship type recognition.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference40 articles.

1. Rainey, K. (2016). Convolution Neural Networks for Ship Type Recognition. Proceedings of the SPIE Defense + Security, Baltimore, USA.

2. Image noise types recognition using convolutional neural network with principal components analysis

3. Convolutional Neural Network approaches to granite tiles classification

4. On the complexity of trial and error

5. Wan, L. , Zeiler, M. , Zhang, S. , Le Cun, Y. and Fergus, R. (2013). Regularization of Neural Networks Using Dropconnect. Proceedings of the International Conference on Machine Learning, Atlanta, USA.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3