Author:
Wang Yunshu,Liu Jianye,Wang Jinling,Zeng Qinghua,Shen Xuesong,Zhang Yueyuan
Abstract
Considering that traditional visual navigation cannot be utilised in low illumination and sparse feature environments, a novel visual-inertial integrated navigation method using a Structured Light Visual (SLV) sensor for Micro Aerial Vehicles (MAVs) is proposed in this paper. First, the measurement model based on an SLV sensor is studied and built. Then, using the state model based on error equations of an Inertial Navigation System (INS), the measurement model based on the error of the relative motion measured by INS and SLV is built. Considering that the measurements in this paper are mainly related to the position and attitude information of the present moment, the state error accumulation in traditional visual-inertial navigation can be avoided. An Adaptive Sage-Husa Kalman Filter (ASHKF) based on multiple weighting factors is proposed and designed to make full use of the SLV measurements. The results of the simulation and the experiment based on real flight data indicate that high accuracy position and attitude estimations can be obtained with the help of the algorithm proposed in this paper.
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献