Magnetic Anomalies as a Reference for Ground-speed and Map-matching Navigation

Author:

Tyrén Carl

Abstract

The Earth's magnetic field has long provided us with a directional reference of almost worldwide usable coverage. This paper examines the use of the magnetic field for ground referenced motion and position measurementsWhere E is the vector representation of an electrical field, v vehicle velocity and B a magnetic field, the electromagnetic law of induction, E = v × B, indicates one possibility for measuring ground speed; the magnetic and electrical fields experienced by vehicle mounted sensors being used to solve the equation for v. This method however only gives the component of v perpendicular to the magnetic field. There are also certain difficulties associated with the measurement of B, which should be only the magnetic field of the Earth at the location of the vehicle, and E, which should be only the electrical field resulting from vehicle motion relative to the magnetic field of the Earth. The main problem appears to be the inseparability of motion dependent and non dependent electrical fields, a problem analogous to that of gravitation-acceleration inseparability for inertial navigation systems. The relative magnitudes of the vehicle-motiondependent E-field, of the order of 10−5 (volt/metre)/(metre/second), and the ever-present and very variable non-motion-dependent E-field between a highly conductive atmospheric layer at an altitude of about 50 km and the surface of the Earth, of some 102 volt/metre, are particularly unfavourable. Another potential basis for a ground-speed measurement system is the heterogeneous character of the intensity of the Earth's magnetic field.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference3 articles.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3