Inference of Single Vessel Behaviour with Incomplete Satellite-based AIS Data

Author:

Liu Changqing,Chen Xiaoqian

Abstract

The problem of analysing a single vessel's behaviour from real but incomplete Automatic Identification System (AIS) data received by satellite has been investigated. The main objective was to infer the route of any single vessel of interest, utilising the dynamic information decoded from AIS messages. A complete process of route inference using position, speed, course over ground and time stamp information is proposed in this paper. Due to the incompleteness of satellite AIS messages, an algorithm incorporating random deviations is also presented to account for the missing sections of obtained vessel routes. Analysis results from a set of real AIS data have demonstrated the applicability of the proposed algorithms in various scenarios.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference11 articles.

1. Johansson F. and Falkman G. (2007). Detection of Vessel Anomalies – a Bayesian Network Approach, 3rd International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 395–400.

2. AIS Contribution in Navigation Operation – Using AIS User Satisfaction Model;Harati-Mokhtari;TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation,2007

3. Evaluation of Main Traffic Congestion Degree for Restricted Waters with AIS Reports;Hu;TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation,2010

4. Satellite AIS – Developing Technology or Existing Capability?

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3