Attitude Estimation By Separate-Bias Kalman Filter-Based Data Fusion

Author:

Setoodeh Peyman,Khayatian Alireza,Frajah Ebrahim

Abstract

Attitude estimation systems often use two or more different sensors to increase reliability and accuracy. Although gyroscopes do not have problems like limited range, interference, and line of sight obscuration, they suffer from slow drift. On the other hand, inclinometers are drift-free but they are sensitive to transverse accelerations and have slow dynamics. This paper presents an extended Kalman filter (EKF)-based data fusion algorithm which utilizes the complementary noise profiles of these two types of sensors to extend their limits. To avoid complexities of dynamic modelling of the platform and its interaction with the environment, gyro modelling will be used to implement indirect (error state) form of the Kalman filter. The great advantage of this approach is its independence from the structure of the platform and its applicability to any system with a similar set of sensors. Separate bias formulation of the Kalman filter will be used to reduce the computational complexity of the algorithm. In addition, a systematic approach based on wavelet decomposition will be utilized to estimate noise covariances used in the Kalman filter formulation. This approach solves many of the convergence problems encountered in the implementation of EKF due to the choice of covariance matrices. Experimental implementation of the estimator shows the excellent performance of the filter.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3