A cellular automaton-based model of ship traffic flow in busy waterways

Author:

Qi LeORCID,Ji Yuanyuan,Balling Robert,Xu Wenhai

Abstract

AbstractIn busy waterways, spatial-temporal discretisation, safe distance and collision avoidance timing are three of the core components of ship traffic flow modelling based on cellular automata. However, these components are difficult to determine in ship traffic simulations because the size, operation and manoeuvrability vary between ships. To solve these problems, a novel traffic flow model is proposed. Firstly, a spatial-temporal discretisation method based on the concept of a standard ship is presented. Secondly, the update rules for ships’ motion are built by considering safe distance and collision avoidance timing, in which ship operation and manoeuvrability are thoroughly considered. We demonstrate the effectiveness of our model, which is implemented through simulating ship traffic flow in a waterway of the Yangtze River, China. By comparing the results with actual observed ship traffic data, our model shows that the behaviours and the characteristics of ships’ motions can be represented very well, which also can be further used to reveal the mechanism that affects the efficiency and safety of ship traffic.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3