A Fast Gradual Fault Detection Method for Underwater Integrated Navigation Systems

Author:

Yi-ting Liu,Xiao-su Xu,Xi-xiang Liu,Tao Zhang,Yao Li,Yi-qing Yao,Liang Wu,Jin-wu Tong

Abstract

Gradual fault detection is always an important issue in integrated navigation systems, and the gradual fault is the most difficult fault to detect. To detect gradual faults in a timely and precise manner in integrated navigation systems, the statistical concepts of the normalised residual mean and the sum of absolute residuals are introduced according to the characteristics of gradual system failure in this paper. The applicability of the improved residual χ2 detection method is discussed. Then, the gradual fault detection program based on the improved residual χ2 detection method is designed with the criterion of normalised residual mean and the sum of absolute residual. The simulation results and vehicle tests show that: 1) The residual of the failed sub-system can be calculated accurately with the improved residual χ2 detection method, which has strong applicability in gradual fault detection; 2) The gradual fault can be detected in a short time by using the normalised residual mean and the sum of absolute residual.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference24 articles.

1. Wang H. (2013). Some Robust Estimation Methods and Application Examples of Linear Regression Models. Shandong University.

2. Huber-based novel robust unscented Kalman filter

3. Application conditions of state chi-square test based on Kalman filter for fault detection;Qiu;Control and Decision,2005

4. An improved robust H∞ multiple fading fault-tolerant filtering algorithm for INS/GPS Integrated navigation;Chen;Journal of Astronautics,2009

5. M-estimate Based Kalman Filter with Immunity to Outliers;Zhang;Information and Electronic Engineering,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3