Author:
Tseng Wei-Kuo,Earle Michael A.,Guo Jiunn-Liang
Abstract
In this paper, equations are established to solve problems of Rhumb Line Sailing (RLS) on an oblate spheroid. Solutions are provided for both the inverse problem and the direct problem, thereby providing a complete solution to RLS. Development of these solutions was achieved in part by means of computer based symbolic algebra. The inverse solution described attains a high degree of accuracy for distance and azimuth. The direct solution has been obtained from a solution for latitude in terms of distance derived with the introduction of an inverse series expansion of meridian arc-length via the rectifying latitude. Also, a series to determine latitude at any longitude has been derived via the conformal latitude. This was achieved through application of Hermite's Interpolation Scheme or the Lagrange Inversion Theorem. Numerical examples show that the algorithms are very accurate and that the differences between original data and recovered data after applying the inverse or direct solution of RLS to recover the data calculated by the direct or inverse solution are very small. It reveals that the algorithms provided here are suitable for programming implementation and can be applied in the areas of maritime routing and cartographical computation in Graphical Information System (GIS) and Electronic Chart Display and Information System (ECDIS) environments.
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献