Author:
Kee Changdon,Jun Haeyoung,Yun Doohee
Abstract
The Global Positioning System (GPS) is now attracting worldwide attention as a navigation sensor. One of the advantages of GPS is that people can find their position using a GPS receiver wherever they are except in obstructed environments. Existing GPS receivers do not work in an obstructed environment despite there being many potential applications. This paper shows the possibility of navigation using GPS technologies indoors in a blocked environment. The paper describes the pseudolite-based indoor navigation system that was developed and implemented at Seoul National University (SNU). The system, which uses GPS technologies, has some different characteristics to normal outdoor GPS systems. The differences cause some practical problems, such as near/far, time-tag, multipath and unknown transmission position problems, which need to be solved to implement the indoor navigation system. The paper introduces various methods for solving such problems. The paper then shows the experimental results and the system accuracy. The satisfactory experimental results show that the RMS static error is 1 mm(1σ) horizontally and 2 mm(1σ) vertically and the RMS dynamic error is 5·6 mm(1σ) horizontally and 15 mm(1σ) vertically. The paper also shows the result of a field application test in the ocean engineering basin of the Korea Research Institute of Ships & Ocean Engineering (KRISO).
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献