Performance Evaluation of a Novel 4D Trajectory Prediction Model for Civil Aircraft

Author:

Porretta Marco,Dupuy Marie-Dominique,Schuster Wolfgang,Majumdar Arnab,Ochieng Washington

Abstract

Future air traffic management will require a variety of automated decision support tools to provide conflict-free trajectories and their associated error margins. The ability to correctly forecast aircraft trajectories, i.e. trajectory prediction, is the central component of such automated tools, which will enable continued provision of safe and efficient services in increasingly congested skies. Current approaches for trajectory prediction, available in the open literature, make a number of assumptions in order to simplify the mathematical models of aircraft motion. Furthermore, many existing methods perform three-dimensional trajectory prediction, in which information on expected times of arrival at significant points along the intended aircraft route is not considered. This results in inaccurate trajectories not suitable for conflict detection and resolution. This paper presents a novel four-dimensional trajectory prediction scheme that makes full use of data on expected times of arrival. A three dimensional point-mass model for a standard civil aircraft is used to emulate aircraft dynamics, while the aircraft operating mode is characterised through a set of discrete variables. The aircraft performance model used relies on the EUROCONTROL Base of Aircraft Data (BADA) set and the computed trajectory accounts for the effects of wind. Inputs include navigation data and aircraft intent information, which unambiguously define the trajectory to be computed according to the flight plan. In the proposed model, aircraft intent information is summarised in a simple, but effective, set of instructions contained in a Flight Script. Furthermore, two key innovations to trajectory prediction are introduced. Firstly, a novel scheme to emulate the control system used for aircraft lateral guidance is proposed and secondly, on the basis of aircraft intent information, a new procedure to estimate speed is presented. The performance of the enhanced trajectory model proposed is quantified using a detailed operational dataset (real flight data) captured in a European airspace. The results show that, over an extended time-horizon, the enhanced model is more accurate than two representative existing methods, and that it is suitable for reliable trajectory prediction.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning-enhanced aircraft landing scheduling under uncertainties;Transportation Research Part C: Emerging Technologies;2024-01

2. An Aircraft Trajectory Intelligent Prediction Scheme with Heading Change Modeling;2023 International Annual Conference on Complex Systems and Intelligent Science (CSIS-IAC);2023-10-20

3. Cooperative Trajectory Prediction of UAVs via Generative Adversarial Networks;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

4. Multi-agent Aircraft Estimated Time of Arrival Prediction in Terminal Airspace;2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC);2023-10-01

5. Methodology of air traffic flow clustering and 3-D prediction of air traffic density in ATC sectors based on machine learning models;Expert Systems with Applications;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3