Height Aiding, C/N0 Weighting and Consistency Checking for GNSS NLOS and Multipath Mitigation in Urban Areas

Author:

Groves Paul D,Jiang Ziyi

Abstract

Multiple global navigation satellite system (GNSS) constellations can dramatically improve the signal availability in dense urban environments. However, accuracy remains a challenge because buildings block, reflect and diffract the signals. This paper investigates three different techniques for mitigating the impact of non-line-of-sight (NLOS) reception and multipath interference on position accuracy without using additional hardware, testing them using data collected at multiple sites in central London. Aiding the position solution using a terrain height database was found to have the biggest impact, improving the horizontal accuracy by 35% and the vertical accuracy by a factor of 4. An 8% improvement in horizontal accuracy was also obtained from weighting the GNSS measurements in the position solution according to the carrier-power-to-noise-density ratio (C/N0). Consistency checking using a conventional sequential elimination technique was found to degrade horizontal positioning performance by 60% because it often eliminated the wrong measurements in cases when multiple signals were affected by NLOS reception or strong multipath interference. A new consistency checking method that compares subsets of measurements performed better, but was still equally likely to improve or degrade the accuracy. This was partly because removing a poor measurement can result in adverse signal geometry, degrading the position accuracy. Based on this, several ways of improving the reliability of consistency checking are proposed.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference25 articles.

1. Wang L. , Groves P. D. and Ziebart M. K. (2012). GNSS Shadow Matching: Improving Urban Positioning Accuracy Using a 3D City Model with Optimized Visibility Prediction Scoring. Proceedings of ION GNSS 2012, Nashville, TN.

2. Van Nee R. D. J. (1992). GPS Multipath and Satellite Interference,” Proceedings of the 48th Annual Meeting of the ION, Washington, DC.

3. RTCA (2006). Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment, DO-229D.

4. GPS Multipath Mitigation for Urban Area Using Omnidirectional Infrared Camera

5. Land Mobile GNSS Availability and Multipath Evaluation Tool

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3