Author:
Ramesh R.,Jyothi V. Bala Naga,Vedachalam N.,Ramadass G.A.,Atmanand M.A.
Abstract
Underwater position data is a key requirement for the navigation and control of unmanned underwater vehicles. The proposed navigation scheme can be used in any vessel or boat for any shallow water vehicle. This paper presents the position estimation algorithm developed for shallow water Remotely Operated Vehicles (ROVs) using attitude data and Doppler Velocity Log data with the initial position from the Global Positioning System (GPS). The navigational sensors are identified using the in-house developed simulation tool in MATLAB, based on the requirement of a position accuracy of less than 5%. The navigation system is built using the identified sensors, Kalman filter and navigation algorithm, developed in LabVIEW software. The developed system is tested and validated for position estimation, with an emulator consisting of a GPS-aided fibre optic gyro-based inertial navigation system as a reference, and it is found that the developed navigation system has a position error of less than 5%.
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献