A novel partial ambiguity method for multi-GNSS real-time kinematic positioning

Author:

Li Haiyang,Nie Guigen,Wang Jing,Wu Shuguang,He Yuefan

Abstract

Abstract Recent progress in using real-time kinematic (RTK) positioning has motivated the exploration of its application due to its high accuracy and efficiency. However, poorly-observed satellite data will cause unfixed ambiguities and markedly biased solutions. A novel partial ambiguity resolution method, named the irrespective of integer ambiguity resolution (IIAR) model, is proposed and applied to improve the reliability of ambiguity resolution. The proposed method contains initial ambiguity resolution and irrespective of integer ambiguity processes. The initial ambiguity resolution process applies an iterative partial ambiguity resolution method to obtain an approximate solution. The irrespective of integer ambiguity process transforms the approximate solution to a high-precision solution. Experiments show that the approximate solution is unreliable when the initial ambiguity resolution process has small redundancy, and the proposed method can obtain better results for those cases. The IIAR method showed about a 40% improvement of multi-GNSS ambiguity success rate and about a 25% improvement of standard deviation. Therefore, these results show that the proposed IIAR method can improve the results of multi-GNSS RTK positioning significantly.

Funder

National Key R&D Program of China

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3