Improved Fault Detection Method Based on Robust Estimation and Sliding Window Test for INS/GNSS Integration

Author:

Zhang Chuang,Zhao Xiubin,Pang Chunlei,Wang Yong,Zhang Liang,Feng Bo

Abstract

Real-time and accurate fault detection and isolation is very important to ensure the reliability and precision of integrated inertial navigation and global navigation satellite systems. In this paper, the detection performance of a residual chi-square method is analysed, and on this basis an improved method of fault detection is proposed. The local test based on a standardised residual is introduced to detect and identify faulty measurements directly. Differing from the traditional method, two appropriate thresholds are selected to calculate the weight factor of each measurement, and the gain matrix is adjusted adaptively to reduce the influence of the undetected faulty measurement. The sliding window test, which uses past measurements, is also added to further improve the fault detection performance for small faults when the local test based on current measurements cannot judge whether a fault has occurred or not. Several simulations are conducted to evaluate the proposed method. The results show that the improved method has better fault detection performance than the traditional detection method, especially for small faults, and can improve the reliability and precision of the navigation system effectively.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference35 articles.

1. Diesel, J. W. and Luu, S. (1995). GPS/IRS AIME: Calculation of Thresholds and Protection Radius Using Chi-Square Methods. Proceedings of the Institute of Navigation's 8th International Technical Meeting, Palm Springs, CA, 1959–1964.

2. Building a robust integrity monitoring algorithm for a low cost GPS-aided-INS system

3. A Novel Fault Detection Method for an Integrated Navigation System using Gaussian Process Regression

4. On Real Time Performance Evaluation of the Inertial Sensors for INS/GPS Integrated Systems

5. Comparison of Adaptive Factors in Kalman Filters on Navigation Results

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3