Error Modelling and Optimal Estimation of Laser Scanning Aided Inertial Navigation System in GNSS-Denied Environments

Author:

Liu W.I.,Li Zhixiong,Zhang Zhichao

Abstract

A Laser Scanning aided Inertial Navigation System (LSINS) is able to provide highly accurate position and attitude information by aggregating laser scanning and inertial measurements under the assumption that the rigid transformation between sensors is known. However, a LSINS is inevitably subject to biased estimation and filtering divergence errors due to inconsistent state estimations between the inertial measurement unit and the laser scanner. To bridge this gap, this paper presents a novel integration algorithm for LSINS to reduce the inconsistences between different sensors. In this new integration algorithm, the Radial Basis Function Neural Networks (RBFNN) and Singular Value Decomposition Unscented Kalman Filter (SVDUKF) are used together to avoid inconsistent state estimations. Optimal error estimation in the LSINS integration process is achieved to reduce the biased estimation and filtering divergence errors through the error state and measurement error model built by the proposed method. Experimental tests were conducted to evaluate the navigation performance of the proposed method in Global Navigation Satellite System (GNSS)-denied environments. The navigation results demonstrate that the relationship between the laser scanner coordinates and the inertial sensor coordinates can be established to reduce sensor measurement inconsistencies, and LSINS position accuracy can be improved by 23·6% using the proposed integration method compared with the popular Extended Kalman Filter (EKF) algorithm.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3