A Novel Design for the Ultra-Tightly Coupled GPS/INS Navigation System

Author:

Jwo Dah-Jing,Yang Chi-Fan,Chuang Chih-Hsun,Lin Kun-Chieh

Abstract

This paper presents a sensor fusion method for the Ultra-Tightly Coupled (UTC) Global Positioning System (GPS)/Inertial Navigation System (INS) integrated navigation. The UTC structure, also known as the deep integration, exhibits many advantages, e.g., disturbance and multipath rejection capability, improved tracking capability for dynamic scenarios and weak signals, and reduction of acquisition time. This architecture involves the integration of I (in-phase) and Q (quadrature) components from the correlator of a GPS receiver with the INS data. The Particle Filter (PF) exhibits superior performance as compared to an Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) in state estimation for the nonlinear, non-Gaussian system. To handle the problem of heavy-tailed probability distribution, one of the strategies is to incorporate the UKF into the PF as the proposal distribution, leading to the Unscented Particle Filter (UPF). The combination of an adaptive UPF and Fuzzy Logic Adaptive System (FLAS) is adopted for reducing the number of particles with sufficiently good results. The GPS tracking loops may lose lock due to the signals being weak, subjected to excessive dynamics or completely blocked. One of the principal advantages of the UTC structure is that a Doppler frequency derived from the INS is integrated with the tracking loops to improve the receiver tracking capability. The Doppler frequency shift is calculated and fed to the GPS tracking loops for elimination of the effect of stochastic errors caused by the Doppler frequency. In this paper, several nonlinear filtering approaches, including EKF, UKF, UPF and ‘FLAS assisted UPF’ (FUPF), are adopted for performance comparison for ultra-tight integration of GPS and INS. It is assumed that no outage occurs such that the inertial sensor errors can be properly corrected and accordingly the aiding information is working well. Two examples are provided for performance assessment for the various data fusion methods. The FUPF algorithm with Doppler velocity aiding demonstrates remarkable improvement, especially in the high dynamic environments, in navigation estimation accuracy with reduction of number of particles.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference30 articles.

1. Improving Adaptive Kalman Estimation in GPS/INS Integration

2. The scaled unscented transformation

3. GPSoft LLC (2005). Navigation System Integration and Kalman Filter Toolbox User's Guide.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3