Author:
Ma Pengbin,Jiang Fanghua,Baoyin Hexi
Abstract
Autonomous navigation has become a key technology for deep space exploration missions. Phobos and Deimos, the two natural moons of Mars, are important optical navigation information sources available for Mars missions. However, during the phase of the probe orbiting close to Mars, the ephemeris bias and the difference between the barycentre and the centre of brightness of a Martian moon will result in low navigation accuracy. On the other hand, Satellite-to-Satellite Tracking (SST) can achieve convenient and high accuracy observation for autonomous navigation. However, this cannot apply for a Mars mission during the Mars orbit phase only by SST data because of a rank defect problem of the Jacobian matrix. To improve the autonomous navigation accuracy of Mars probes, this paper presents a new autonomous navigation method that combines SST radio data provided by two probes and optical measurement by viewing the natural Martian moons. Two sequential orbit determination algorithms, an Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are compared. Simulation results show this method can obtain high autonomous navigation accuracy during the probe's Mars Orbit phase.
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献