Evaluation of C-Band Precise Orbit Determination of Geostationary Earth Orbit Satellites based on the Chinese Area Positioning System

Author:

Fen Cao,XuHai Yang,MuDan Su,ZhiGang Li,Liang Chen,WeiChao Li,BaoQi Sun,Yao Kong,Pei Wei,ChuGang Feng

Abstract

Geostationary Earth Orbit (GEO) satellites play a significant role in the space segment of the Chinese Area Navigation System. The C-Band transfer ranging method developed by the National Time Service Center (NTSC) has been widely used in the Chinese Area Positioning System (CAPS), with its advantages of separating satellite ranging from time synchronization and being unaffected by weather. The explicit ranging correction models for the C-Band transfer ranging method are introduced in detail in this article for the first time. Precise Orbit Determination (POD) using C-Band pseudo-range observation of GEO satellite 2010-001A in July 2012 has been conducted. The residual Root Mean Square (RMS) of each site and POD are analysed with orbit difference over overlaps of adjacent orbit arcs. Moreover, the orbit of the GEO satellite has been evaluated by Satellite Laser Ranging (SLR) data from both domestic and foreign SLR sites for the first time. The residual RMS of POD using C-Band observation is better than 0·1 m, and the orbit difference over overlaps of adjacent orbit arcs is better than 3 m. In addition, the residual RMS in line-of-sight for a SLR site in China are better than 1 m, while the RMS for the Yarragadee site in Australia is about 3·4 m. It has been shown that the GEO satellite orbit accords very well with the C-Band observation. Also, the distribution of CAPS stations affects the orbit precision. All sites in CAPS are now located in China with low and medium latitudes. The residual RMS of the SLR site in the southern hemisphere is larger than that of the site in China.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3