Enhanced Kalman Filter using Noisy Input Gaussian Process Regression for Bridging GPS Outages in a POS

Author:

Ye Wen,Liu ZhanchaoORCID,Li Chi,Fang Jiancheng

Abstract

A Position and Orientation System (POS) integrating an Inertial Navigation Systems (INS) and the Global Positioning System (GPS) is a key component of remote sensing motion compensation. It can provide reliable and high-frequency high-precision motion information using a Kalman Filter (KF) during GPS availability. However, the performance of a POS significantly degrades during GPS outages. To maintain reliable POS outputs, this paper proposes a new hybrid predictor based on modelling the nonlinear time-series data-driven INS-errors using Noisy Input Gaussian Process Regression (NIGPR), which takes the input noise into account. The proposed approach is used to learn the nonlinear INS-errors model when GPS signals are available. When GPS outages occur, it starts to predict the observation measurement, and then feeds it to a KF as a virtual update to estimate all the INS errors. The proposed approach is verified in a real airplane, which combines a POS and Synthetic Aperture Radar (SAR). Experimental results show that the proposed approach significantly improves the performance of the POS, with improvements more than 90% better than a KF and 10% better than a Gaussian Process Regression (GPR/KF) combination during various GPS outages.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference27 articles.

1. Simulation and results on real-time positioning of Chang'E-3 rover with the same-beam VLBI observations

2. Neural network aided Kalman filtering for integrated GPS/INS geo-referencing platform;Wang;Toronto Journal of Theology,2008

3. GA-SVR and Pseudo-position-aided GPS/INS Integration during GPS Outage

4. Gaussian Processes for Machine Learning

5. Nassar S.M. and Schwartz K.P. (2001). Bridging DGPS Outages in Kinematic Applications Using A Simple Algorithm for INS Bias Modeling. The International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation. 401–408

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3