A virtual environment for evaluation of computer vision algorithms under general airborne camera imperfections

Author:

Mahmoudi Arshiya,Sabzehparvar Mehdi,Mortazavi Mahdi

Abstract

AbstractThis paper describes a camera simulation framework for validating machine vision algorithms under general airborne camera imperfections. Lens distortion, image delay, rolling shutter, motion blur, interlacing, vignetting, image noise, and light level are modelled. This is the first simulation that considers all temporal distortions jointly, along with static lens distortions in an online manner. Several innovations are proposed including a motion tracking system allowing the camera to follow the flight log with eligible derivatives. A reverse pipeline, relating each pixel in the output image to pixels in the ideal input image, is developed. It is shown that the inverse lens distortion model and the inverse temporal distortion models are decoupled in this way. A short-time pixel displacement model is proposed to solve for temporal distortions (i.e. delay, rolling shutter, motion blur, and interlacing). Evaluation is done by several means including regenerating an airborne dataset, regenerating the camera path on a calibration pattern, and evaluating the ability of the time displacement model to predict other frames. Qualitative evaluations are also made.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference41 articles.

1. Direct Sparse Odometry

2. Time-Continuous Quasi-Monte Carlo Ray Tracing

3. Perception-based model simplification for motion blur rendering

4. Decentering distortion of lenses;Brown;Photogrammetric Engineering and Remote Sensing,1966

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accommodating the multi-state constraint Kalman filter for visual-inertial navigation in a moving and stationary flight;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-01-14

2. Maritime navigational assistance by visual augmentation;Journal of Navigation;2021-10-29

3. Predictably unpredictable;Journal of Navigation;2021-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3